Correction TP Réaction d'oxydoréduction.

- A.1. Un pellicule de cuivre Cu se forme sur la laine de fer et la solution, initialement bleue, se
- A.2. Test de caractérisation des ions Fe^{2+} : on verse quelques gouttes d'une solution de soude dans la solution étudiée, il se forme un précipité vert si les ions Fe^{2+} sont présents.
- A.3. Réaction 1: Fe(s) + Cu²⁺(aq) \rightarrow Fe²⁺(aq) + Cu(s)
- B.1. Il se forme des «aiguilles» d'argent métallique Ag et la solution devient bleue, il s'est donc formé des ions cuivre Cu²⁺.
- B.2. Réaction 2: Cu(s) + $2Ag^{+}(aq) \rightarrow Cu^{2+}(aq) + 2Ag(s)$
- C.1.a. Réaction 1:

réducteur : Fe (Fe cède 2 électrons , il devient Fe²⁺) oxydant: Cu²⁺(Cu²⁺ capte 2 électrons, il devient Cu)

C.1.b. Réaction 2:

réducteur : Cu (Cu cède 2 électrons , il devient Cu²⁺) oxydant: Ag⁺(Ag⁺ capte 1 électron, il devient Ag)

- C.2. Fe \rightarrow Fe²⁺ + 2e⁻ $Cu^{2+} + 2e^{-} \rightarrow Cu$
 - $Fe(s) + Cu^{2+}(aq) \rightarrow Fe^{2+}(aq) + Cu(s)$
- C.3. Oxydation (perte d'e ·): Fe \rightarrow Fe²⁺ + 2e⁻ Réduction (gain d'e ·): Cu²⁺ + 2e⁻ \rightarrow Cu
- C.4.a. La solution se colore en jaune (formation de diiode I₂ jaune)
- C.4.b. $S_{2}O_{8}^{2-} + 2e^{-} \rightarrow 2SO_{4}^{2-}$ $2I^{-} \rightarrow I_{2} + 2e^{-}$ $S_{2}O_{9}^{2-}(aq) + 2I^{-}(aq) \rightarrow 2SO_{4}^{2-}(aq) + I_{2}(aq)$

- D. Application 1: $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$
- D. Application 2: $2H_2O \rightarrow H_2O_2 + 2H^+ + 2e^-$

E.b.

$$H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$$

$$2l^- \rightarrow l_2 + 2e^ H_2O_2(aq) + 2H^+(aq) + 2l^-(aq) \rightarrow 2H_2O(l) + l_2(aq)$$

E(bis).a. Les gouttes violettes se décolorent quand elles se mélangent dans la solution.

$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$$

5 x (Fe²⁺ \rightarrow Fe³⁺ + e⁻)

$$MnO_4^{-}(aq) + 8H^+(aq) + 5Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + 4H_2O(I) + 5Fe^{3+}(aq)$$

- F.2. Il se forme de la buée (micro-goutelettes d'eau)
- F.3. L'eau de chaux se trouble (donc présence de CO₂)

F.4.
$$CH_4(g) + 2O_2(g) \rightarrow 2H_2O(I) + CO_2(g)$$

F.5.
$$CH_4 + 2H_2O \rightarrow CO_2 + 8H^+ + 8e^-$$

$$2 \times (O_2 + 4H^+ + 4e^- \rightarrow 2H_2O^-)$$

$$CH_4(g) + 2O_2(g) \rightarrow 2H_2O(I) + CO_2(g)$$

Rq: Cette réaction n'a pas lieu dans l'eau mais dans l'air donc dans ce cas les demi-équations rédox permettent de retrouver l'équation-bilan mais elles n'ont pas de réalité physique :il s'agit dans ce cas d'une «technique». Cependant, on comprend que CH₄ cède des électrons: il est oxydé et O₂ capte des électrons, c'est un oxydant.